Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1953480

ABSTRACT

In the context of the new life-threatening COVID-19 pandemic caused by the SARS-CoV-2 virus, finding new antiviral and antimicrobial compounds is a priority in current research. Pyridine is a privileged nucleus among heterocycles; its compounds have been noted for their therapeutic properties, such as antimicrobial, antiviral, antitumor, analgesic, anticonvulsant, anti-inflammatory, antioxidant, anti-Alzheimer's, anti-ulcer or antidiabetic. It is known that a pyridine compound, which also contains a heterocycle, has improved therapeutic properties. The singular presence of the pyridine nucleus, or its one together with one or more heterocycles, as well as a simple hydrocarbon linker, or grafted with organic groups, gives the key molecule a certain geometry, which determines an interaction with a specific protein, and defines the antimicrobial and antiviral selectivity for the target molecule. Moreover, an important role of pyridine in medicinal chemistry is to improve water solubility due to its poor basicity. In this article, we aim to review the methods of synthesis of pyridine compounds, their antimicrobial and antiviral activities, the correlation of pharmaceutical properties with various groups present in molecules as well as the binding mode from Molecular Docking Studies.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Pandemics , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2
2.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1934105

ABSTRACT

Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.


Subject(s)
Antifungal Agents/administration & dosage , Epithelium/drug effects , Organometallic Compounds/administration & dosage , Pyridines/administration & dosage , Skin/drug effects , Administration, Cutaneous , Animals , Antifungal Agents/chemistry , Dermatitis, Seborrheic/diagnosis , Dermatitis, Seborrheic/drug therapy , Dermatitis, Seborrheic/etiology , Dysbiosis , Epidermis/drug effects , Epithelium/microbiology , Humans , Microbial Sensitivity Tests , Optical Imaging/methods , Organometallic Compounds/chemistry , Pyridines/chemistry , Skin/microbiology , Skin Absorption , Spectrum Analysis
3.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1892922

ABSTRACT

BACKGROUND: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. METHODS: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. RESULTS: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the "open field" and "elevated plus maze" (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b-f and 4e. The studied compounds increase the latent time of first immobilization on the "forced swimming" (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at -10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at -11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c-f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at -9.3 ± 0.46 kcal/mol). CONCLUSIONS: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.


Subject(s)
Anti-Anxiety Agents , Pentylenetetrazole , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Antidepressive Agents/pharmacology , Molecular Docking Simulation , Pentylenetetrazole/adverse effects , Pyridines/chemistry , Pyrimidines/chemistry , Receptors, GABA-A , Structure-Activity Relationship
4.
Comput Biol Med ; 145: 105512, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778065

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has posed a threat to public health throughout the world since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was discovered in late 2019. Since the beginning of the pandemic, scientists have done a tremendous amount of work in this area. However, among these studies, the investigation of the effect of newly synthesized compounds against coronavirus is rather weak. Examining the newly synthesized compounds with a computer-assisted molecular docking study provides quite an advantage in terms of the estimation and analysis of the biochemical activity and binding affinity of existing synthesized compounds against a biological target in a labor, time, and cost-saving way. In this study, the SNS pincer type 2,6-bis[[(4-methylphenyl)thio]methyl]pyridine ligand(L) (1) and its novel Pd(II) complexes ([Pd(κ2-L)(OAc)2]·3H2O (2) and [Pd(κ2-L)Cl2]·3H2O (3)) were synthesized and characterized by using FT-IR, UV-Vis, NMR, mass and elemental analysis techniques. The synthesized Pd complexes exhibited a square planar structure. The compounds were found to have non-electrolytic behavior. In the meantime, in silico investigations have defined and justified interaction processes between these molecules and Pd(II) at the atomic level. Furthermore, using molecular docking against target proteins of SARS-CoV-2, the efficiency of the SNS pincer type ligand and its Pd (II) complexes produced was studied and discussed for the first time. The experimental data has been supported and illuminated using computational visual methods and molecular docking, and the findings produced indicate compatibility. The binding energy values of the relevant compounds on the four protein model structures of SARS-CoV-2 (Main Protease, Papain-like protease, RdRp without RNA, and RdRp with RNA) are represented. Compound 2 ([Pd(κ2-L)(OAc)2]·3H2O) is the structure that exhibits the highest biochemical activity. According to all of the docking studies, Papain-like protease is the SARS-CoV-2 protein with which the three compounds exhibit mutual interaction. The compound 2 structure, in particular, is the most effective in terms of structural and interaction with the targets, as well as binding orientations.


Subject(s)
COVID-19 Drug Treatment , Humans , Ligands , Molecular Docking Simulation , Papain , Peptide Hydrolases , Pyridines/chemistry , RNA , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Sulfides
5.
Chem Commun (Camb) ; 57(83): 10911-10914, 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1488037

ABSTRACT

We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.


Subject(s)
Peptide Nucleic Acids/chemistry , Phenazines/chemistry , Pyridines/chemistry , RNA/chemistry , Catalysis , Hydrogen-Ion Concentration , Hydrolysis , Ribonucleases/chemistry , Zinc/chemistry
6.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438673

ABSTRACT

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Esters/chemistry , Esters/pharmacology , Halogenation , Humans , Ibuprofen/analogs & derivatives , Ibuprofen/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/pharmacology , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2/metabolism , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Vero Cells
7.
J Med Chem ; 64(19): 14702-14714, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1412442

ABSTRACT

Here, we report the synthesis, structure-activity relationship studies, enzyme inhibition, antiviral activity, and X-ray crystallographic studies of 5-chloropyridinyl indole carboxylate derivatives as a potent class of SARS-CoV-2 chymotrypsin-like protease inhibitors. Compound 1 exhibited a SARS-CoV-2 3CLpro inhibitory IC50 value of 250 nM and an antiviral EC50 value of 2.8 µM in VeroE6 cells. Remdesivir, an RNA-dependent RNA polymerase inhibitor, showed an antiviral EC50 value of 1.2 µM in the same assay. Compound 1 showed comparable antiviral activity with remdesivir in immunocytochemistry assays. Compound 7d with an N-allyl derivative showed the most potent enzyme inhibitory IC50 value of 73 nM. To obtain molecular insight into the binding properties of these molecules, X-ray crystal structures of compounds 2, 7b, and 9d-bound to SARS-CoV 3CLpro were determined, and their binding properties were compared.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Dynamics Simulation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Pyridines/chemistry , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Vero Cells
8.
J Mol Model ; 27(10): 276, 2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1391881

ABSTRACT

Rimegepant is a new medicine developed for the management of chronic headache due to migraine. This manuscript is an attempt to study the various structural, physical, and chemical properties of the molecules. The molecule was optimized using B3LYP functional with 6-311G + (2d,p) basis set. Excited state properties of the compound were studied using CAM-B3LYP functional with same basis sets using IEFPCM model in methanol for the implicit solvent atmosphere. The various electronic descriptors helped to identify the reactivity behavior and stability. The compound is found to possess good nonlinear optical properties in the gas phase. The various intramolecular electronic delocalizations and non-covalent interactions were analyzed and explained. As the compound contain several heterocyclic nitrogen atoms, they have potential proton abstraction features, which was analyzed energetically. The most important result from this study is from the molecular docking analysis which indicates that rimegepant binds irreversibly with three established SARS-CoV-2 proteins with ID 6LU7, 6M03, and 6W63 with docking scores - 9.2988, - 8.3629, and - 9.5421 kcal/mol respectively. Further assessment of docked complexes with molecular dynamics simulations revealed that hydrophobic interactions, water bridges, and π-π interactions play a significant role in stabilizing the ligand within the binding region of respective proteins. MMGBSA-free energies further demonstrated that rimegepant is more stable when complexed with 6LU7 among the selected PDB models. As the pharmacology and pharmacokinetics of this molecule are already established, rimegepant can be considered as an ideal candidate with potential for use in the treatment of COVID patients after clinical studies.


Subject(s)
Molecular Dynamics Simulation , Piperidines/chemistry , Protons , Pyridines/chemistry , SARS-CoV-2/chemistry , Viral Proteins/chemistry , SARS-CoV-2/metabolism , Viral Proteins/metabolism
9.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282543

ABSTRACT

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Coronavirus 3C Proteases/chemistry , Porifera/chemistry , Porifera/metabolism , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/drug effects , Amino Sugars/chemistry , Amino Sugars/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
10.
Angew Chem Int Ed Engl ; 60(18): 10423-10429, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1114156

ABSTRACT

The main protease of SARS-CoV-2 (Mpro ), the causative agent of COVID-19, constitutes a significant drug target. A new fluorogenic substrate was kinetically compared to an internally quenched fluorescent peptide and shown to be ideally suitable for high throughput screening with recombinantly expressed Mpro . Two classes of protease inhibitors, azanitriles and pyridyl esters, were identified, optimized and subjected to in-depth biochemical characterization. Tailored peptides equipped with the unique azanitrile warhead exhibited concomitant inhibition of Mpro and cathepsin L, a protease relevant for viral cell entry. Pyridyl indole esters were analyzed by a positional scanning. Our focused approach towards Mpro inhibitors proved to be superior to virtual screening. With two irreversible inhibitors, azanitrile 8 (kinac /Ki =37 500 m-1 s-1 , Ki =24.0 nm) and pyridyl ester 17 (kinac /Ki =29 100 m-1 s-1 , Ki =10.0 nm), promising drug candidates for further development have been discovered.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Nitriles/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Drug Design , Drug Discovery , HEK293 Cells , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , Nitriles/chemistry , Protease Inhibitors/chemistry , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Virus Internalization/drug effects
11.
J Mol Model ; 26(12): 341, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-926723

ABSTRACT

HER-2 type breast cancer is one of the most aggressive malignancies found in women. Tucatinib is recently developed and approved as a potential medicine to fight this disease. In this manuscript, we present the gross structural features of this compound and its reactivity and wave function properties using computational simulations. Density functional theory was used to optimise the ground state geometry of the molecule and molecular docking was used to predict biological activity. As the electrons interact with electromagnetic radiations, electronic excitations between different energy levels are analysed in detail using time-dependent density functional theory. Various intermolecular and intermolecular interactions are analysed and reaction sites for attacking electrophiles and nucleophiles identified. Information entropy calculations show that the compound is inherently stable. Docking with COVID-19 proteins show docking score of - 9.42, - 8.93, - 8.45 and - 8.32 kcal/mol respectively indicating high interaction between the drug and proteins. Hence, this is an ideal candidate to study repurposing of existing drugs to combat the pandemic.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Electrons , Oxazoles/chemistry , Protease Inhibitors/chemistry , Pyridines/chemistry , Quinazolines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antineoplastic Agents/metabolism , Antiviral Agents/metabolism , Betacoronavirus/enzymology , Binding Sites , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxazoles/metabolism , Protease Inhibitors/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pyridines/metabolism , Quantum Theory , Quinazolines/metabolism , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
12.
J Mol Graph Model ; 101: 107730, 2020 12.
Article in English | MEDLINE | ID: covidwho-863411

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is an attractive target towards discovery of drugs to treat COVID-19 because of its key role in virus replication. The atomic structure of Mpro in complex with an α-ketoamide inhibitor (Lig13b) is available (PDB ID:6Y2G). Using 6Y2G and the prior knowledge that protease inhibitors could eradicate COVID-19, we designed a computational study aimed at identifying FDA-approved drugs that could interact with Mpro. We searched the DrugBank and PubChem for analogs and built a virtual library containing ∼33,000 conformers. Using high-throughput virtual screening and ligand docking, we identified Isavuconazonium, a ketoamide inhibitor (α-KI) and Pentagastrin as the top three molecules (Lig13b as the benchmark) based on docking energy. The ΔGbind of Lig13b, Isavuconazonium, α-KI, Pentagastrin was -28.1, -45.7, -44.7, -34.8 kcal/mol, respectively. Molecular dynamics simulation revealed that these ligands are stable within the Mpro active site. Binding of these ligands is driven by a variety of non-bonded interaction, including polar bonds, H-bonds, van der Waals and salt bridges. The overall conformational dynamics of the complexed-Mpro was slightly altered relative to apo-Mpro. This study demonstrates that three distinct classes molecules, Isavuconazonium (triazole), α-KI (ketoamide) and Pentagastrin (peptide) could serve as potential drugs to treat patients with COVID-19.


Subject(s)
Cysteine Endopeptidases/chemistry , Nitriles/pharmacology , Pentagastrin/pharmacology , Protease Inhibitors/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Databases, Pharmaceutical , Drug Approval , Drug Discovery , Drug Repositioning , High-Throughput Screening Assays/methods , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles/chemistry , Pentagastrin/chemistry , Protease Inhibitors/chemistry , Pyridines/chemistry , Triazoles/chemistry , United States , United States Food and Drug Administration , Viral Nonstructural Proteins/metabolism
13.
J Infect Public Health ; 13(9): 1210-1223, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-599724

ABSTRACT

BACKGROUND: The rapidly enlarging COVID-19 pandemic caused by the novel SARS-corona virus-2 is a global public health emergency of an unprecedented level. Unfortunately no treatment therapy or vaccine is yet available to counter the SARS-CoV-2 infection, which substantiates the need to expand research efforts in this direction. The indispensable function of the main protease in virus replication makes this enzyme a promising target for inhibitors screening and drug discovery to treat novel coronavirus infection. The recently concluded α-ketoamide ligand-bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al. has revealed the potential inhibitor binding mechanism and the molecular determinants responsible for substrate binding. METHODS: For the study, we have targeted the SARS-CoV-2 Mpro for the screening of FDA approved antiviral drugs and carried out molecular docking based virtual screening. Further molecular dynamic simulation studies of the top three selected drugs carried out to investigated for their binding affinity and stability in the SARS-CoV-2 Mpro active site. The phylogenetic analysis was also performed to know the relatedness between the SARS-CoV-2 genomes isolated from different countries. RESULTS: The phylogenetic analysis of the SARS-CoV-2 genome reveals that the virus is closely related to the Bat-SL-CoV and does not exhibit any divergence at the genomic level. Molecular docking studies revealed that among the 77 drugs, screened top ten drugs shows good binding affinities, whereas the top three drugs: Lopinavir-Ritonavir, Tipranavir, and Raltegravir were undergone for molecular dynamics simulation studies for their conformational stability in the active site of the SARS-CoV-2 Mpro protein. CONCLUSIONS: In the present study among the library of FDA approved antiviral drugs, the top three inhibitors Lopinavir-Ritonavir, Tipranavir, and Raltegravir show the best molecular interaction with the main protease of SARS-CoV-2. However, the in-vitro efficacy of the drug molecules screened in this study further needs to be corroborated by carrying out a biochemical and structural investigation.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Drug Repositioning , Pneumonia, Viral/drug therapy , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Betacoronavirus/genetics , COVID-19 , Coronavirus 3C Proteases , Drug Combinations , Humans , Lopinavir/chemistry , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Phylogeny , Pyridines/chemistry , Pyrones/chemistry , Raltegravir Potassium/chemistry , Ritonavir/chemistry , SARS-CoV-2 , Sulfonamides , Viral Nonstructural Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL